IRGA: An Intelligent Implicit Real-time Gait Authentication System in Heterogeneous Complex Scenarios

Author:

Yang Li1ORCID,Li Xi2ORCID,Ma Zhuoru2ORCID,Li Lu2ORCID,Xiong Neal3ORCID,Ma Jianfeng4ORCID

Affiliation:

1. School of Computer Science and Technology, and Shaanxi Key Laboratory of Network and System Security, Xidian University, China

2. School of Computer Science and Technology, Xidian University, China

3. Department of Computer Science and Mathematics, Sul Ross State University, USA

4. School of Cyber Engineering, and Shaanxi Key Laboratory of Network and System Security, Xidian University, China

Abstract

Gait authentication as a technique that can continuously provide identity recognition on mobile devices for security has been investigated by academics in the community for decades. However, most of the existing work achieves insufficient generalization to complex real-world environments due to the complexity of the noisy real-world gait data. To address this limitation, we propose an intelligent Implicit Real-time Gait Authentication (IRGA) system based on Deep Neural Networks (DNNs) for enhancing the adaptability of gait authentication in practice. In the proposed system, the gait data (whether with complex interference signals) will first be processed sequentially by the imperceptible collection module and data preprocessing module for improving data quality. In order to illustrate and verify the suitability of our proposal, we provide analysis of the impact of individual gait changes on data feature distribution. Finally, a fusion neural network composed of a Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is designed to perform feature extraction and user authentication. We evaluate the proposed IRGA system in heterogeneous complex scenarios and present start-of-the-art comparisons on three datasets. Extensive experiments demonstrate that the IRGA system achieves improved performance simultaneously in several different metrics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human Identification Based on Gaits Analysis Using Sensors-Based Data Bands;2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3