Affiliation:
1. University of California, San Diego, San Diego, CA, USA
Abstract
We present
Logically Qualified Data Types
, abbreviated to
Liquid Types
, a system that combines
Hindley-Milner
type inference with
Predicate Abstraction
to automatically infer dependent types precise enough to prove a variety of safety properties. Liquid types allow programmers to reap many of the benefits of dependent types, namely static verification of critical properties and the elimination of expensive run-time checks, without the heavy price of manual annotation. We have implemented liquid type inference in DSOLVE, which takes as input an OCAML program and a set of logical qualifiers and infers dependent types for the expressions in the OCAML program. To demonstrate the utility of our approach, we describe experiments using DSOLVE to statically verify the safety of array accesses on a set of OCAML benchmarks that were previously annotated with dependent types as part of the DML project. We show that when used in conjunction with a fixed set of array bounds checking qualifiers, DSOLVE reduces the amount of manual annotation required for proving safety from 31% of program text to under 1%.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献