Superfusion: Eliminating Intermediate Data Structures via Inductive Synthesis

Author:

Ji Ruyi1ORCID,Zhao Yuwei1ORCID,Polikarpova Nadia2ORCID,Xiong Yingfei1ORCID,Hu Zhenjiang1ORCID

Affiliation:

1. Peking University, Beijing, China

2. University of California at San Diego, San Diego, USA

Abstract

Intermediate data structures are a common cause of inefficiency in functional programming. Fusion attempts to eliminate intermediate data structures by combining adjacent data traversals into one; existing fusion techniques, however, are based on predefined rewrite rules and hence are limited in expressiveness. In this work we explore a different approach to eliminating intermediate data structures, based on inductive program synthesis. We dub this approach superfusion (by analogy with superoptimization , which uses inductive synthesis for program optimization). Starting from a reference program annotated with data structures to be eliminated, superfusion first generates a sketch where program fragments operating on those data structures are replaced with holes; it then fills the holes with constant-time expressions such that the resulting program is equivalent to the reference. The main technical challenge here is scalability because optimized programs are often complex, making the search space intractably large for naive enumeration. To address this challenge, our key insight is to first synthesize a ghost function that describes the relationship between the original intermediate data structure and its compressed version; this function, although not used in the final program, serves to decompose the joint sketch filling problem into independent simpler problems for each hole. We implement superfusion in a tool called SuFu and evaluate it on a dataset of 290 tasks collected from prior work on deductive fusion and program restructuring. The results show that SuFu solves 264 out of 290 tasks, exceeding the capabilities of rewriting-based fusion systems and achieving comparable performance with specialized approaches to program restructuring on their respective domains.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference58 articles.

1. Umut A Acar. 2005. Self-adjusting computation. Ph. D. Dissertation. Carnegie Mellon University.

2. SyGuS-Comp 2017: Results and Analysis

3. Scaling Enumerative Program Synthesis via Divide and Conquer

4. Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. https://openreview.net/forum?id=ByldLrqlx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3