Adaptive selection of necessary and sufficient checkpoints for dynamic verification of temporal constraints in grid workflow systems

Author:

Chen Jinjun1,Yang Yun1

Affiliation:

1. Swinburne University of Technology, Melbourne, Australia

Abstract

In grid workflow systems, a checkpoint selection strategy is responsible for selecting checkpoints for conducting temporal verification at the runtime execution stage. Existing representative checkpoint selection strategies often select some unnecessary checkpoints and omit some necessary ones because they cannot adapt to the dynamics and uncertainty of runtime activity completion duration. In this article, based on the dynamics and uncertainty of runtime activity completion duration, we develop a novel checkpoint selection strategy that can adaptively select not only necessary, but also sufficient checkpoints. Specifically, we introduce a new concept of minimum time redundancy as a key reference parameter for checkpoint selection. An important feature of minimum time redundancy is that it can adapt to the dynamics and uncertainty of runtime activity completion duration. We develop a method on how to achieve minimum time redundancy dynamically along grid workflow execution and investigate its relationships with temporal consistency. Based on the method and the relationships, we present our strategy and rigorously prove its necessity and sufficiency. The simulation evaluation further demonstrates experimentally such necessity and sufficiency and its significant improvement on checkpoint selection over other representative strategies.

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference40 articles.

1. Analysis and provision of QoS for distributed grid applications;Al;J. Grid Comput.,2004

2. The grid economy;Buyya R.;Proceedings of the IEEE,2005

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3