NoC Application Mapping Optimization Using Reinforcement Learning

Author:

Jagadheesh Samala1ORCID,Bhanu P. Veda1ORCID,J. Soumya1

Affiliation:

1. Birla Institute of Technology and Science—Pilani, Jawahar Nagar, Hyderabad, Telangana, India

Abstract

Application mapping is one of the early stage design processes aimed to improve the performance of Network-on-Chip. Mapping is an NP-hard problem. A massive amount of high-quality supervised data is required to solve the application mapping problem using traditional neural networks. In this article, a reinforcement learning–based neural framework is proposed to learn the heuristics of the application mapping problem. The proposed reinforcement learning–based mapping algorithm (RL-MAP) has actor and critic networks. The actor is a policy network, which provides mapping sequences. The critic network estimates the communication cost of these mapping sequences. The actor network updates the policy distribution in the direction suggested by the critic. The proposed RL-MAP is trained with unsupervised data to predict the permutations of the cores to minimize the overall communication cost. Further, the solutions are improved using the 2-opt local search algorithm. The performance of RL-MAP is compared with a few well-known heuristic algorithms, the Neural Mapping Algorithm (NMA) and message-passing neural network-pointer network-based genetic algorithm (MPN-GA). Results show that the communication cost and runtime of the RL-MAP improved considerably in comparison with the heuristic algorithms. The communication cost of the solutions generated by RL-MAP is nearly equal to MPN-GA and improved by 4.2% over NMA, while consuming less runtime.

Funder

Indo-Austrian joint

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3