1. A Comparative Analysis of Hybrid Deep Learning Models for Human Activity Recognition;Abbaspour Saedeh;Sensors,2020
2. Dzmitry Bahdanau Kyunghyun Cho and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473(2015). Dzmitry Bahdanau Kyunghyun Cho and Yoshua Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. CoRR abs/1409.0473(2015).
3. Antonio Bevilacqua , Kyle MacDonald , Aamina Rangarej , Venessa Widjaya , Brian Caulfield , and Tahar Kechadi . 2019. Human Activity Recognition with Convolutional Neural Networks . In Machine Learning and Knowledge Discovery in Databases . Springer International Publishing , 541–552. https://doi.org/10.1007/978-3-030-10997-4_33 10.1007/978-3-030-10997-4_33 Antonio Bevilacqua, Kyle MacDonald, Aamina Rangarej, Venessa Widjaya, Brian Caulfield, and Tahar Kechadi. 2019. Human Activity Recognition with Convolutional Neural Networks. In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 541–552. https://doi.org/10.1007/978-3-030-10997-4_33
4. Transfer learning for activity recognition: a survey
5. L. Minh Dang , Kyungbok Min , Hanxiang Wang , Md. Jalil Piran , Cheol Hee Lee , and Hyeonjoon Moon . 2020. Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition 108 (Dec . 2020 ), 107561. https://doi.org/10.1016/j.patcog.2020.107561 10.1016/j.patcog.2020.107561 L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee, and Hyeonjoon Moon. 2020. Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition 108 (Dec. 2020), 107561. https://doi.org/10.1016/j.patcog.2020.107561