Affiliation:
1. Department of Computer Science, University of the Punjab, Lahore 54590, Pakistan
2. Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan
Abstract
Recently, the research community has shown significant interest in the continuous temporal data obtained from motion sensors in wearable devices. These data are useful for classifying and analysing different human activities in many application areas such as healthcare, sports and surveillance. The literature has presented a multitude of deep learning models that aim to derive a suitable feature representation from temporal sensory input. However, the presence of a substantial quantity of annotated training data is crucial to adequately train the deep networks. Nevertheless, the data originating from the wearable devices are vast but ineffective due to a lack of labels which hinders our ability to train the models with optimal efficiency. This phenomenon leads to the model experiencing overfitting. The contribution of the proposed research is twofold: firstly, it involves a systematic evaluation of fifteen different augmentation strategies to solve the inadequacy problem of labeled data which plays a critical role in the classification tasks. Secondly, it introduces an automatic feature-learning technique proposing a Multi-Branch Hybrid Conv-LSTM network to classify human activities of daily living using multimodal data of different wearable smart devices. The objective of this study is to introduce an ensemble deep model that effectively captures intricate patterns and interdependencies within temporal data. The term “ensemble model” pertains to fusion of distinct deep models, with the objective of leveraging their own strengths and capabilities to develop a solution that is more robust and efficient. A comprehensive assessment of ensemble models is conducted using data-augmentation techniques on two prominent benchmark datasets: CogAge and UniMiB-SHAR. The proposed network employs a range of data-augmentation methods to improve the accuracy of atomic and composite activities. This results in a 5% increase in accuracy for composite activities and a 30% increase for atomic activities.
Funder
Higher Education Pakistan