Identification of Optimal Data Augmentation Techniques for Multimodal Time-Series Sensory Data: A Framework

Author:

Ashfaq Nazish1ORCID,Khan Muhammad Hassan1ORCID,Nisar Muhammad Adeel2ORCID

Affiliation:

1. Department of Computer Science, University of the Punjab, Lahore 54590, Pakistan

2. Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan

Abstract

Recently, the research community has shown significant interest in the continuous temporal data obtained from motion sensors in wearable devices. These data are useful for classifying and analysing different human activities in many application areas such as healthcare, sports and surveillance. The literature has presented a multitude of deep learning models that aim to derive a suitable feature representation from temporal sensory input. However, the presence of a substantial quantity of annotated training data is crucial to adequately train the deep networks. Nevertheless, the data originating from the wearable devices are vast but ineffective due to a lack of labels which hinders our ability to train the models with optimal efficiency. This phenomenon leads to the model experiencing overfitting. The contribution of the proposed research is twofold: firstly, it involves a systematic evaluation of fifteen different augmentation strategies to solve the inadequacy problem of labeled data which plays a critical role in the classification tasks. Secondly, it introduces an automatic feature-learning technique proposing a Multi-Branch Hybrid Conv-LSTM network to classify human activities of daily living using multimodal data of different wearable smart devices. The objective of this study is to introduce an ensemble deep model that effectively captures intricate patterns and interdependencies within temporal data. The term “ensemble model” pertains to fusion of distinct deep models, with the objective of leveraging their own strengths and capabilities to develop a solution that is more robust and efficient. A comprehensive assessment of ensemble models is conducted using data-augmentation techniques on two prominent benchmark datasets: CogAge and UniMiB-SHAR. The proposed network employs a range of data-augmentation methods to improve the accuracy of atomic and composite activities. This results in a 5% increase in accuracy for composite activities and a 30% increase for atomic activities.

Funder

Higher Education Pakistan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3