Affiliation:
1. Electrical and Computer Engineering, University of Central Florida, Orlando, Florida USA
2. Computer Science, Indian Institute of Technology Kanpur, Uttar Pradesh, India
Abstract
Untrusted foundries pose threats of integrated circuit (IC) piracy and counterfeiting, and this has motivated research into logic locking. Strong logic locking approaches potentially prevent piracy and counterfeiting by preventing unauthorized replication and use of ICs. Unfortunately, recent work has shown that most state-of-the-art logic locking techniques are vulnerable to attacks that utilize Boolean Satisfiability (SAT) solvers.
In this article, we extend our prior work on using silicon nanowire (SiNW) field-effect transistors (FETs) to produce obfuscated ICs that are resistant to reverse engineering attacks, such as the sensitization attack, SAT and approximate SAT attacks, as well as tracked signal attacks. Our method is based on exchanging some logic gates in the original design with a set of polymorphic gates (PLGs), designed using SiNW FETs, and augmenting the circuit with a small block, whose output is untraceable, namely, URSAT. The URSAT may not offer very strong resilience against the combined AppSAT-removal attack. Strong URSAT is achieved using only CMOS-logic gates, namely, S-URSAT. The proposed technique, S-URSAT + PLG-based traditional encryption, designed using SiNW FETs, increases the security level of the design to robustly thwart all existing attacks, including combined AppSAT-removal attack, with small penalties. Then, we evaluate the effectiveness of our proposed methods and subject it to a thorough security analysis. We also evaluate the performance penalty of the technique and find that it results in very small overheads in comparison to other works. The average area, power, and delay overheads of implementing 64 baseline key-bits of S-URSAT for small benchmarks are 5.03%, 2.60%, and −2.26%, respectively, while for large benchmarks they are 2.37%, 1.18%, and −1.93%.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献