Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic

Author:

Bryant Randal E.1,German Steven2,Velev Miroslav N.1

Affiliation:

1. Carnegie Mellon Univ., Pittsburgh, PA

2. IBM Watson Research Center, Yorktown Heights, NY

Abstract

The logic of Equality with Uninterpreted Functions (EUF) provides a means of abstracting the manipulation of data by a processor when verifying the correctness of its control logic. By reducing formulas in this logic to propositional formulas, we can apply Boolean methods such as ordered Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification. We can exploit characteristics of the formulas describing the verification conditions to greatly simplfy the propostional formulas generated. We identify a class of terms we call “p-terms” for which equality comparisons can only be used in monotonically positive formulas. By applying suitable abstractions to the hardware model, we can express the functionality of data values and instruction addresses flowing through an instruction pipeline with p-terms. A decision procedure can exploit the restricted uses of p-terms by considering only “maximally diverse” interpretations of the associated function symbols, where every function application yields a different value execept when constrainted by functional consistency. We present two methods to translate formulas in EUF into propositional logic. The first interprets the formula over a domain of fixed-length bit vectors and uses vectors of propositional variables to encode domain variables. The second generates formulas encoding the conditions under which pairs of terms have equal valuations, introducing propostional variables to encode the equality relations between pairs of terms. Both of these approaches can exploit maximal diversity to greatly reduce the number of propositional variables that need to be introduced and to reduce the overall formula sizes. We present experimental results demonstrating the efficiency of this approach when verifying pipelined processors using the method proposed by Burch and Dill. Exploiting positive equality allows us to overcome the experimental blow-up experienced previously when verifying microprocessors with load, store, and branch instructions.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference20 articles.

1. ACKERMANN W. 1954. Solvable Cases of the Decision Problem North-Holland.]] ACKERMANN W. 1954. Solvable Cases of the Decision Problem North-Holland.]]

2. Graph-Based Algorithms for Boolean Function Manipulation

3. Techniques for verifying superscalar microprocessors

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3