Combining Simulation and Emulation Systems for Smart Grid Planning and Evaluation

Author:

Hannon Christopher1,Yan Jiaqi1,Jin Dong1,Chen Chen2,Wang Jianhui2

Affiliation:

1. Illinois Institute of Technology, Chicago, IL

2. Argonne National Laboratory, Lemont, IL

Abstract

Software-defined networking (SDN) enables efficient network management. As the technology matures, utilities are looking to integrate those benefits to their operations technology (OT) networks. To help the community to better understand and evaluate the effects of such integration, we develop DSSnet, a testing platform that combines a power distribution system simulator and an SDN-based network emulator for smart grid planning and evaluation. DSSnet relies on a container-based virtual time system to achieve efficient synchronization between the simulation and emulation systems. To enhance the system scalability and usability, we extend DSSnet to support a distributed controller environment. To enhance system fidelity, we extend the virtual time system to support kernel-based switches. We also evaluate the system performance of DSSnet and demonstrate the usability of DSSnet with a resilient demand response application case study.

Funder

Maryland Procurement Office

National Science Foundation

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference34 articles.

1. Open networking foundation. Retrieved from https://www.opennetworking.org. Accessed August 2015. Open networking foundation. Retrieved from https://www.opennetworking.org. Accessed August 2015.

2. ONOS

3. Software-defined energy communication networks: From substation automation to future smart grids

4. Synchronization Algorithms for Co-simulation of Power Grid and Communication Networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3