Distributed Virtual Time-Based Synchronization for Simulation of Cyber-Physical Systems

Author:

Hannon Christopher1ORCID,Yan Jiaqi2,Jin Dong2

Affiliation:

1. Illinois Institute of Technology and CRCL GmbH, Chicago, Illinois

2. Illinois Institute of Technology, Chicago, Illinois

Abstract

Our world today increasingly relies on the orchestration of digital and physical systems to ensure the successful operations of many complex and critical infrastructures. Simulation-based testbeds are useful tools for engineering those cyber-physical systems and evaluating their efficiency, security, and resilience. In this article, we present a cyber-physical system testing platform combining distributed physical computing and networking hardware and simulation models. A core component is the distributed virtual time system that enables the efficient synchronization of virtual clocks among distributed embedded Linux devices. Virtual clocks also enable high-fidelity experimentation by interrupting real and emulated cyber-physical applications to inject offline simulation data. We design and implement two modes of the distributed virtual time: periodic mode for scheduling repetitive events like sensor device measurements, and dynamic mode for on-demand interrupt-based synchronization. We also analyze the performance of both approaches to synchronization including overhead, accuracy, and error introduced from each approach. By interconnecting the embedded devices’ general purpose IO pins, they can coordinate and synchronize with low overhead, under 50 microseconds for eight processes across four embedded Linux devices. Finally, we demonstrate the usability of our testbed and the differences between both approaches in a power grid control application.

Funder

NSF

Maryland Procurement Office

AFOSR

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference36 articles.

1. A comprehensive co-simulation platform for cyber-physical systems

2. ARM. 2011. A20 User Manual (r0p0 ed.). ARM. Retrieved from http://dl.linux-sunxi.org/A20/A20 User Manual 2013-03-22.pdf. ARM. 2011. A20 User Manual (r0p0 ed.). ARM. Retrieved from http://dl.linux-sunxi.org/A20/A20 User Manual 2013-03-22.pdf.

3. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges in Simulating Communication Systems;SIGSIM Conference on Principles of Advanced Discrete Simulation;2022-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3