Scaling and pivoting in an out-of-core sparse direct solver

Author:

Scott Jennifer A.1

Affiliation:

1. Rutherford Appleton Laboratory, U.K.

Abstract

Out-of-core sparse direct solvers reduce the amount of main memory needed to factorize and solve large sparse linear systems of equations by holding the matrix data, the computed factors, and some of the work arrays in files on disk. The efficiency of the factorization and solution phases is dependent upon the number of entries in the factors. For a given pivot sequence, the level of fill in the factors beyond that predicted on the basis of the sparsity pattern alone depends on the number of pivots that are delayed (i.e., the number of pivots that are used later than expected because of numerical stability considerations). Our aim is to limit the number of delayed pivots, while maintaining robustness and accuracy. In this article, we consider a new out-of-core multifrontal solver HSL_MA78 from the HSL mathematical software library that is designed to solve the unsymmetric sparse linear systems that arise from finite element applications. We consider how equilibration can be built into the solver without requiring the system matrix to be held in main memory. We also examine the effects of different pivoting strategies, including threshold partial pivoting, threshold rook pivoting, and static pivoting. Numerical experiments on problems arising from a range of practical applications illustrate the importance of scaling and show that, in some cases, rook pivoting can be more efficient than partial pivoting in terms of both the factorization time and the sparsity of the computed factors.

Funder

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Open-Source Processing Pipeline for Quad-Dominant Mesh Generation for Class-Compliant Ship Structural Analysis;Journal of Marine Science and Engineering;2022-02-04

2. A survey of direct methods for sparse linear systems;Acta Numerica;2016-05-01

3. Accuracy Enhanced Distributed Sparse Matrix Solver with Block-Based Pivoting for Large Linear Systems;2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom);2015-08

4. An Out-of-Core Task-based Middleware for Data-Intensive Scientific Computing;Handbook on Data Centers;2015

5. Partial factorization of a dense symmetric indefinite matrix;ACM Transactions on Mathematical Software;2011-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3