Approximate Sketches

Author:

Tsan Brian1ORCID,Datta Asoke1ORCID,Izenov Yesdaulet1ORCID,Rusu Florin1ORCID

Affiliation:

1. University of California, Merced, Merced, CA, USA

Abstract

Sketches are single-pass small-space data summaries that can quickly estimate the cardinality of join queries. However, sketches are not directly applicable to join queries with dynamic filter conditions --- where arbitrary selection predicate(s) are applied --- since a sketch is limited to a fixed selection. While multiple sketches for various selections can be used in combination, they each incur individual storage and maintenance costs. Alternatively, exact sketches can be built during runtime for every selection. To make this process scale, a high-degree of parallelism --- available in hardware accelerators such as GPUs --- is required. Therefore, sketch usage for cardinality estimation in query optimization is limited. Following recent work that applies transformers to cardinality estimation, we design a novel learning-based method to approximate the sketch of any arbitrary selection, enabling sketches for join queries with filter conditions. We train a transformer on each table to estimate the sketch of any subset of the table, i.e., any arbitrary selection. Transformers achieve this by learning the joint distribution amongst table attributes, which is equivalent to a multidimensional sketch. Subsequently, transformers can approximate any sketch, enabling sketches for join cardinality estimation. In turn, estimating joins via approximate sketches allows tables to be modeled individually and thus scales linearly with the number of tables. We evaluate the accuracy and efficacy of approximate sketches on queries with selection predicates consisting of conjunctions of point and range conditions. Approximate sketches achieve similar accuracy to exact sketches with at least one order of magnitude less overhead.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. Tracking join and self-join sizes in limited storage

2. The Space Complexity of Approximating the Frequency Moments

3. Space/time trade-offs in hash coding with allowable errors

4. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877--1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

5. Graham Cormode and Minos N. Garofalakis. 2005. Sketching Streams Through the Net: Distributed Approximate Query Tracking. In Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September 2, 2005, Klemens Bö hm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and Beng Chin Ooi (Eds.). ACM, 13--24. http://www.vldb.org/archives/website/2005/program/paper/tue/p13-cormode.pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximate Sketches;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3