Leveraging Large Language Models to Power Chatbots for Collecting User Self-Reported Data

Author:

Wei Jing1ORCID,Kim Sungdong2,Jung Hyunhoon3,Kim Young-Ho2ORCID

Affiliation:

1. University of Melbourne, Melbourne, VIC, Australia

2. NAVER AI Lab, Seongnam, Republic of Korea

3. NAVER CLOUD, Seongnam-si, Republic of Korea

Abstract

Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.

Publisher

Association for Computing Machinery (ACM)

Reference118 articles.

1. 2021. Auto-GPT. https://github.com/Significant-Gravitas/Auto-GPT. GitHub repository.

2. 2022. Chatgpt is a tipping point for AI. https://hbr.org/2022/12/chatgpt-is-a-tipping-point-for-ai

3. 2023. ChatGPT passes 1B page views. https://aibusiness.com/nlp/chatgpt-passes-1b-page-views.

4. Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al . 2020. Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977 (2020).

5. Sam Altman. 2022. CHATGPT launched on Wednesday. Today it crossed 1 million users! https://twitter.com/sama/status/1599668808285028353

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3