A Survey on AutoML Methods and Systems for Clustering

Author:

Poulakis Yannis1ORCID,Doulkeridis Christos1ORCID,Kyriazis Dimosthenis1ORCID

Affiliation:

1. Department of Digital Systems, University of Piraeus, Piraeus, Greece

Abstract

Automated Machine Learning (AutoML) aims to identify the best-performing machine learning algorithm along with its input parameters for a given dataset and a specific machine learning task. This is a challenging problem, as the process of finding the best model and tuning it for a particular problem at hand is both time-consuming for a data scientist and computationally expensive. In this survey, we focus on unsupervised learning, and we turn our attention on AutoML methods for clustering. We present a systematic review that includes many recent research works for automated clustering. Furthermore, we provide a taxonomy for the classification of existing works, and we perform a qualitative comparison. As a result, this survey provides a comprehensive overview of the field of AutoML for clustering. Moreover, we identify open challenges for future research in this field.

Funder

European Union’s funded Projects MobiSpaces

Green.DAT.AI

Publisher

Association for Computing Machinery (ACM)

Reference97 articles.

1. No free lunch theorems for optimization;Wolpert David H.;IEEE Trans. Evol. Comput.,1997

2. On clustering validation techniques;Halkidi Maria;J. Intell. Inf. Syst.,2001

3. The self-organizing map;Kohonen Teuvo;Proc. IEEE,1990

4. Clustering of the self-organizing map;Vesanto Juha;IEEE Trans. Neural Netw. Learn. Syst.,2000

5. Automatic recommendation of a distance measure for clustering algorithms;Zhu Xiaoyan;ACM Trans. Knowl. Discov. Data,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity Measures Recommendation for Mixed Data Clustering;Proceedings of the 36th International Conference on Scientific and Statistical Database Management;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3