Covering SPL Behaviour with Sampled Configurations

Author:

Devroey Xavier,Perrouin Gilles,Legay Axel,Schobbens Pierre-Yves,Heymans Patrick

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

ACM Press

Reference39 articles.

1. M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake. Similarity-based prioritization in software product-line testing. In S. Gnesi, A. Fantechi, P. Heymans, J. Rubin, and K. Czarnecki, editors, 18th International Software Product Line Conference, SPLC '14, Florence, Italy, September 15-19, 2014, pages 197--206. ACM, 2014.

2. H. Cichos, S. Oster, M. Lochau, and A. Schürr. Model-based Coverage-driven Test Suite Generation for Software Product Lines. In MODELS '11, LNCS, pages 425--439. Springer, 2011.

3. A. Classen. Modelling with FTS: a Collection of Illustrative Examples. Technical Report P-CS-TR SPLMC-00000001, PReCISE Research Center, University of Namur, Namur, Belgium, 2010.

4. A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and J.-F. Raskin. Featured Transition Systems : Foundations for Verifying Variability-Intensive Systems and their Application to LTL Model Checking. TSE, 39(8):1069--1089, 2013.

5. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG System: an approach to testing based on combinatorial design. IEEE Transactions on Software Engineering, 23(7):437--444, 1997.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Flexible Approach for Variability Mining;28th ACM International Systems and Software Product Line Conference;2024-09-02

2. VaryMinions: leveraging RNNs to identify variants in variability-intensive systems’ logs;Empirical Software Engineering;2024-06-15

3. A Deep Reinforcement Learning Approach to Configuration Sampling Problem;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01

4. Software Product Line Testing based on Event Sequence Graphs with Feature Expressions;2023 8th International Conference on Computer Science and Engineering (UBMK);2023-09-13

5. A Deep Reinforcement Learning Approach to Configuration Sampling Problem;IEEE DATA MINING;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3