Affiliation:
1. Cornell University, Ithaca, NY, USA
Abstract
Information security can be compromised by leakage via low-level hardware features. One recently prominent example is cache probing attacks, which rely on timing channels created by caches. We introduce a hardware design language, SecVerilog, which makes it possible to statically analyze information flow at the hardware level. With SecVerilog, systems can be built with verifiable control of timing channels and other information channels. SecVerilog is Verilog, extended with expressive type annotations that enable precise reasoning about information flow. It also comes with rigorous formal assurance: we prove that SecVerilog enforces timing-sensitive noninterference and thus ensures secure information flow. By building a secure MIPS processor and its caches, we demonstrate that SecVerilog makes it possible to build complex hardware designs with verified security, yet with low overhead in time, space, and HW designer effort.
Funder
National Science Foundation
Office of Naval Research
MURI
U.S. Air Force
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献