Translational and Rotational Arrow Cues (TRAC) Navigation Method for Manual Alignment Tasks

Author:

Usevitch David E.1,Sperry Adam J.1,Abbott Jake J.1

Affiliation:

1. University of Utah, Salt Lake City, UT

Abstract

Many tasks in image-guided surgery require a clinician to manually position an instrument in space, with respect to a patient, with five or six degrees of freedom (DOF). Displaying the current and desired pose of the object on a 2D display such as a computer monitor is straightforward. However, providing guidance to accurately and rapidly navigate the object in 5-DOF or 6-DOF is challenging. Guidance is typically accomplished by showing distinct orthogonal viewpoints of the workspace, requiring simultaneous alignment in all views. Although such methods are commonly used, they can be quite unintuitive, and it can take a long time to perform an accurate 5-DOF or 6-DOF alignment task. In this article, we describe a method of visually communicating navigation instructions using translational and rotational arrow cues (TRAC) defined in an object-centric frame, while displaying a single principal view that approximates the human’s egocentric view of the physical object. The target pose of the object is provided but typically is used only for the initial gross alignment. During the accurate-alignment stage, the user follows the unambiguous arrow commands. In a series of human-subject studies, we show that the TRAC method outperforms two common orthogonal-view methods—the triplanar display, and a sight-alignment method that closely approximates the Acrobot Navigation System—in terms of time to complete 5-DOF and 6-DOF navigation tasks. We also find that subjects can achieve 1 mm and 1° accuracy using the TRAC method with a median completion time of less than 20 seconds.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Screw-Tip Soft Magnetically Steerable Needles;IEEE Transactions on Medical Robotics and Bionics;2024-02

2. Data generalization processing and fusion machine translation system based on virtual reality technology;Second International Conference on Electronic Information Technology (EIT 2023);2023-08-15

3. Review of Enhanced Handheld Surgical Drills;Critical Reviews in Biomedical Engineering;2023

4. Towards reducing visual workload in surgical navigation: proof-of-concept of an augmented reality haptic guidance system;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2022-12-05

5. Precueing Sequential Rotation Tasks in Augmented Reality;28th ACM Symposium on Virtual Reality Software and Technology;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3