A Case Study with CICIDS2017 on the Robustness of Machine Learning against Adversarial Attacks in Intrusion Detection
Author:
Affiliation:
1. Università degli Studi del Sannio, Italy
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3600160.3605031
Reference42 articles.
1. The Cross-Evaluation of Machine Learning-Based Network Intrusion Detection Systems
2. F. Beer and U. Buehler . 2017. Feature selection for flow-based intrusion detection using rough set theory . In Proc. International Conference on Networking, Sensing and Control. IEEE, 617–624 . F. Beer and U. Buehler. 2017. Feature selection for flow-based intrusion detection using rough set theory. In Proc. International Conference on Networking, Sensing and Control. IEEE, 617–624.
3. B. Biggio I. Corona G. Fumera G. Giacinto and F. Roli. 2011. Bagging Classifiers for Fighting Poisoning Attacks in Adversarial Classification Tasks. In Multiple Classifier Systems C. Sansone J. Kittler and F. Roli (Eds.). Springer 350–359. B. Biggio I. Corona G. Fumera G. Giacinto and F. Roli. 2011. Bagging Classifiers for Fighting Poisoning Attacks in Adversarial Classification Tasks. In Multiple Classifier Systems C. Sansone J. Kittler and F. Roli (Eds.). Springer 350–359.
4. N. Carlini and D. Wagner . 2017. Towards Evaluating the Robustness of Neural Networks . In Proc. Symposium on Security and Privacy. IEEE, 39–57 . N. Carlini and D. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Proc. Symposium on Security and Privacy. IEEE, 39–57.
5. Transferability of machine learning models learned from public intrusion detection datasets: the CICIDS2017 case study
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial network;International Journal of Information Security;2024-04-12
2. From Bytes to Insights: A Systematic Literature Review on Unraveling IDS Datasets for Enhanced Cybersecurity Understanding;IEEE Access;2024
3. An Adversarial Robustness Benchmark for Enterprise Network Intrusion Detection;Lecture Notes in Computer Science;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3