Adversarial attack detection framework based on optimized weighted conditional stepwise adversarial network

Author:

Barik Kousik,Misra Sanjay,Fernandez-Sanz Luis

Abstract

AbstractArtificial Intelligence (AI)-based IDS systems are susceptible to adversarial attacks and face challenges such as complex evaluation methods, elevated false positive rates, absence of effective validation, and time-intensive processes. This study proposes a WCSAN-PSO framework to detect adversarial attacks in IDS based on a weighted conditional stepwise adversarial network (WCSAN) with a particle swarm optimization (PSO) algorithm and SVC (support vector classifier) for classification. The Principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) are used for feature selection and extraction. The PSO algorithm optimizes the parameters of the generator and discriminator in WCSAN to improve the adversarial training of IDS. The study presented three distinct scenarios with quantitative evaluation, and the proposed framework is evaluated with adversarial training in balanced and imbalanced data. Compared with existing studies, the proposed framework accomplished an accuracy of 99.36% in normal and 98.55% in malicious traffic in adversarial attacks. This study presents a comprehensive overview for researchers interested in adversarial attacks and their significance in computer security.

Funder

Institute for Energy Technology

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3