GRAM

Author:

Ho Nhut-Minh1,silva Himeshi De1,Wong Weng-Fai1

Affiliation:

1. National University of Singapore

Abstract

This article presents GRAM (<underline>G</underline>PU-based <underline>R</underline>untime <underline>A</underline>daption for <underline>M</underline>ixed-precision) a framework for the effective use of mixed precision arithmetic for CUDA programs. Our method provides a fine-grain tradeoff between output error and performance. It can create many variants that satisfy different accuracy requirements by assigning different groups of threads to different precision levels adaptively at runtime . To widen the range of applications that can benefit from its approximation, GRAM comes with an optional half-precision approximate math library. Using GRAM, we can trade off precision for any performance improvement of up to 540%, depending on the application and accuracy requirement.

Funder

Singapore Ministry of Education

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MixPert: Optimizing Mixed-Precision Floating-Point Emulation on GPU Integer Tensor Cores;Proceedings of the 25th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems;2024-06-20

2. Interleaved Execution of Approximated CUDA Kernels in Iterative Applications;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

3. Predicting Performance and Accuracy of Mixed-Precision Programs for Precision Tuning;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-02-06

4. Towards a SYCL API for Approximate Computing;International Workshop on OpenCL;2023-04-18

5. FPChecker: Floating-Point Exception Detection Tool and Benchmark for Parallel and Distributed HPC;2022 IEEE International Symposium on Workload Characterization (IISWC);2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3