Dynamic Precision Autotuning with TAFFO

Author:

Cherubin Stefano1ORCID,Cattaneo Daniele1,Chiari Michele1,Agosta Giovanni1

Affiliation:

1. Politecnico di Milano, Milano, MI, Italy

Abstract

Many classes of applications, both in the embedded and high performance domains, can trade off the accuracy of the computed results for computation performance. One way to achieve such a trade-off is precision tuning—that is, to modify the data types used for the computation by reducing the bit width, or by changing the representation from floating point to fixed point. We present a methodology for high-accuracy dynamic precision tuning based on the identification of input classes (i.e., classes of input datasets that benefit from similar optimizations). When a new input region is detected, the application kernels are re-compiled on the fly with the appropriate selection of parameters. In this way, we obtain a continuous optimization approach that enables the exploitation of the reduced precision computation while progressively exploring the solution space, thus reducing the time required by compilation overheads. We provide tools to support the automation of the runtime part of the solution, leaving to the user only the task of identifying the input classes. Our approach provides a significant performance boost (up to 320%) on the typical approximate computing benchmarks, without meaningfully affecting the accuracy of the result, since the error remains always below 3%.

Funder

European Union’s Horizon 2020 programme

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design-time methodology for optimizing mixed-precision CPU architectures on FPGA;Journal of Systems Architecture;2024-10

2. SeTHet - Sending Tuned numbers over DMA onto Heterogeneous clusters: an automated precision tuning story;Proceedings of the 21st ACM International Conference on Computing Frontiers;2024-05-07

3. Hard SyDR: A Benchmarking Environment for Global Navigation Satellite System Algorithms;Sensors;2024-01-09

4. Towards Benchmarking GNSS Algorithms on FPGA using SyDR;2023 International Conference on Localization and GNSS (ICL-GNSS);2023-06-06

5. Hardware and Software Support for Mixed Precision Computing: a Roadmap for Embedded and HPC Systems;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3