Affiliation:
1. National Tsing Hua University, Hsinchu, Taiwan
Abstract
Power leakage constitutes an increasing fraction of the total power consumption in modern semiconductor technologies due to the continuing size reductions and increasing speeds of transistors. Recent studies have attempted to reduce leakage power using integrated architecture and compiler power-gating mechanisms. This approach involves compilers inserting instructions into programs to shut down and wake up components, as appropriate. While early studies showed this approach to be effective, there are concerns about the large amount of power-control instructions being added to programs due to the increasing amount of components equipped with power-gating controls in SoC design platforms. In this article we present a
sink-n-hoist
framework for a compiler to generate balanced scheduling of power-gating instructions. Our solution attempts to merge several power-gating instructions into a single compound instruction, thereby reducing the amount of power-gating instructions issued. We performed experiments by incorporating our compiler analysis and scheduling policies into SUIF compiler tools and by simulating the energy consumption using Wattch toolkits. The experimental results demonstrate that our mechanisms are effective in reducing the amount of power-gating instructions while further reducing leakage power compared to previous methods.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献