Compilation for compact power-gating controls

Author:

You Yi-Ping1,Huang Chung-Wen1,Lee Jenq Kuen1

Affiliation:

1. National Tsing Hua University, Hsinchu, Taiwan

Abstract

Power leakage constitutes an increasing fraction of the total power consumption in modern semiconductor technologies due to the continuing size reductions and increasing speeds of transistors. Recent studies have attempted to reduce leakage power using integrated architecture and compiler power-gating mechanisms. This approach involves compilers inserting instructions into programs to shut down and wake up components, as appropriate. While early studies showed this approach to be effective, there are concerns about the large amount of power-control instructions being added to programs due to the increasing amount of components equipped with power-gating controls in SoC design platforms. In this article we present a sink-n-hoist framework for a compiler to generate balanced scheduling of power-gating instructions. Our solution attempts to merge several power-gating instructions into a single compound instruction, thereby reducing the amount of power-gating instructions issued. We performed experiments by incorporating our compiler analysis and scheduling policies into SUIF compiler tools and by simulating the energy consumption using Wattch toolkits. The experimental results demonstrate that our mechanisms are effective in reducing the amount of power-gating instructions while further reducing leakage power compared to previous methods.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rewriting and Optimizing Vector Length Agnostic Intrinsics from Arm SVE to RVV;The 53rd International Conference on Parallel Processing Workshops;2024-08-12

2. EXPERTISE: An Effective Software-level Redundant Multithreading Scheme against Hardware Faults;ACM Transactions on Architecture and Code Optimization;2022-09-16

3. Risk-5: Controlled Approximations for RISC-V;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2020-11

4. Compiler-Directed Parallelism Scaling Framework for Performance Constrained Energy Optimization;IEEE Access;2020

5. Compiler Optimizing for Power Efficiency of On-Chip Memory;Communications in Computer and Information Science;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3