Affiliation:
1. University of North Carolina at Chapel Hill, Chapel Hill USA
Abstract
The field of end-user robot programming seeks to develop methods that empower non-expert programmers to task and modify robot operations. In doing so, researchers may enhance robot flexibility and broaden the scope of robot deployments into the real world. We introduce
PRogramAR
(Programming Robots using Augmented Reality), a novel end-user robot programming system that combines the intuitive visual feedback of augmented reality (AR) with the simplistic and responsive paradigm of trigger-action programming (TAP) to facilitate human-robot collaboration. Through PRogramAR, users are able to rapidly author task rules and desired reactive robot behaviors, while specifying task constraints and observing program feedback contextualized directly in the real world. PRogramAR provides feedback by simulating the robot’s intended behavior and providing instant evaluation of TAP rule executability to help end users better understand and debug their programs during development. In a system validation, 17 end users ranging from ages 18 to 83 used PRogramAR to program a robot to assist them in completing three collaborative tasks. Our results demonstrate how merging the benefits of AR and TAP using elements from prior robot programming research into a single novel system can successfully enhance the robot programming process for non-expert users.
Publisher
Association for Computing Machinery (ACM)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献