Should your specification language be typed

Author:

Lamport Leslie1,Paulson Lawrence C.2

Affiliation:

1. Compaq, Palo Alto, CA

2. Univ. of Cambridge, Cambridge, UK

Abstract

Most specification languages have a type system. Type systems are hard to get right, and getting them wrong can lead to inconsistencies. Set theory can serve as the basis for a specification language without types. This possibility, which has been widely overlooked, offers many advantages. Untyped set theory is simple and is more flexible than any simple typed formalism. Polymorphism, overloading, and subtyping can make a type system more powerful, but at the cost of increased somplexity, and such refinements can never attain the flexibility of having no types at all. Typed formalisms have advantages, too, stemming from the power of mechanical type checking. While types serve little purpose in hand proofs, they do help with mechanized proofs. In the absence of verificaiton, type checking can catch errors in specifications. It may be possible to have the best of both worlds by adding typing annotations to an untyped specification language. We consider only specification languages, not programming languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference44 articles.

1. APT K. R. AND OLDEROG E.-R. 1990. Verification of Sequential and Concurrent Programs. Texts and Monographs in Computer Science. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona. APT K. R. AND OLDEROG E.-R. 1990. Verification of Sequential and Concurrent Programs. Texts and Monographs in Computer Science. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona.

2. BOYER R. S. AND MOOaE J. S. 1988. A Computational Logic Handbook. Academic Press. BOYER R. S. AND MOOaE J. S. 1988. A Computational Logic Handbook. Academic Press.

3. CHANDY K. M. AND MISRA J. 1988. Parallel Program Design. Addison-Wesley Reading Massachusetts. CHANDY K. M. AND MISRA J. 1988. Parallel Program Design. Addison-Wesley Reading Massachusetts.

4. CONSTABLE R. L. ALLEN S. F. BROMLEY H. M. CLEAVELAND W. R. CaEMEa J. F. HAaPEa R. W. HOWE D. J. KNOBLOCK T. B. MENDLER N. P. PANAGADEN P. SASAKI J. T. AND SMITH S. F. 1986. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall. CONSTABLE R. L. ALLEN S. F. BROMLEY H. M. CLEAVELAND W. R. CaEMEa J. F. HAaPEa R. W. HOWE D. J. KNOBLOCK T. B. MENDLER N. P. PANAGADEN P. SASAKI J. T. AND SMITH S. F. 1986. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Encoding TLA+ proof obligations safely for SMT;Science of Computer Programming;2025-01

2. An Automatically Verified Prototype of a Landing Gear System;Lecture Notes in Computer Science;2024

3. GTP Benchmarks for Gradual Typing Performance;Proceedings of the 2023 ACM Conference on Reproducibility and Replicability;2023-06-27

4. Encoding Dependently-Typed Constructions into Simple Type Theory;Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs;2023-01-11

5. Encoding $$\textrm{TLA}^{+}$$ Proof Obligations Safely for SMT;Rigorous State-Based Methods;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3