1. Thorsten Altenkirch , Paolo Capriotti , and Nicolai Kraus . 2016 . Extending Homotopy Type Theory with Strict Equality. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
2. Some constructions on ω-groupoids
3. Dimitri Ara. 2010. Sur les ∞ -groupoïdes de Grothendieck et une variante ∞ -catégorique. Ph. D. Dissertation. Université Paris 7. https://www.i2m.univ-amu.fr/perso/dimitri.ara/files/these.pdf Dimitri Ara. 2010. Sur les ∞ -groupoïdes de Grothendieck et une variante ∞ -catégorique. Ph. D. Dissertation. Université Paris 7. https://www.i2m.univ-amu.fr/perso/dimitri.ara/files/these.pdf
4. Ali Assaf , Guillaume Burel , Raphal Cauderlier , David Delahaye , Gilles Dowek , Catherine Dubois , Frédéric Gilbert , Pierre Halmagrand , Olivier Hermant , and Ronan Saillard . 2016. Expressing theories in the λ Π -calculus modulo theory and in the Dedukti system. TYPES: Types for Proofs and Programs. Novi SAd , Serbia (May 2016 ). Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. 2016. Expressing theories in the λ Π -calculus modulo theory and in the Dedukti system. TYPES: Types for Proofs and Programs. Novi SAd, Serbia (May 2016).
5. Locales: A Module System for Mathematical Theories