Statistical Timing and Power Optimization of Architecture and Device for FPGAs

Author:

Cheng Lerong1,Xu Wenyao1,Gong Fang1,Lin Yan1,Wong Ho-Yan1,He Lei1

Affiliation:

1. University of California, Los Angeles

Abstract

Process variation in nanometer technology is becoming an important issue for cutting-edge FPGAs with a multimillion gate capacity. Considering both die-to-die and within-die variations in effective channel length, threshold voltage, and gate oxide thickness, we first develop closed-form models of chip-level FPGA leakage and timing variations. Experiments show that the mean and standard deviation computed by our models are within 3% from those computed by Monte Carlo simulation. We also observe that the leakage and timing variations can be up to 3X and 1.9X, respectively. We then derive analytical yield models considering both leakage and timing variations, and use such models to evaluate the performance of FPGA device and architecture considering process variations. Compared to the baseline, which uses the VPR architecture and device setup based on the ITRS roadmap, device and architecture tuning improves leakage yield by 10.4%, timing yield by 5.7%, and leakage and timing combined yield by 9.4%. We also observe that LUT size of 4 gives the highest leakage yield, LUT size of 7 gives the highest timing yield, but LUT size of 5 achieves the maximum leakage and timing combined yield. To the best of our knowledge, this is the first in-depth study on FPGA architecture and device coevaluation considering process variation.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3