Completeness of Flat Coalgebraic Fixpoint Logics

Author:

Schröder Lutz1ORCID,Venema Yde2

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

2. ILLC, Universiteit van Amsterdam, GE Amsterdam, The Netherlands

Abstract

Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The μ-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability and in fact often live within the single variable fragment of the μ-calculus. The family of such flat fixpoint logics includes, e.g., Linear Temporal Logic (LTL), Computation Tree Logic (CTL), and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard μ-calculus including, e.g., flat fragments of the graded μ-calculus and the alternating-time μ-calculus (such as alternating-time temporal logic), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference54 articles.

1. Alternating-time temporal logic

2. Franz Baader Diego Calvanese Deborah McGuinness Daniele Nardi and Peter Patel-Schneider (Eds.). 2003. The Description Logic Handbook. Cambridge University Press. Franz Baader Diego Calvanese Deborah McGuinness Daniele Nardi and Peter Patel-Schneider (Eds.). 2003. The Description Logic Handbook. Cambridge University Press.

3. Modal Logic

4. Modal Logic

5. EXPTIME Tableaux for the Coalgebraic mu-Calculus

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coalgebraic Satisfiability Checking for Arithmetic $\mu$-Calculi;Logical Methods in Computer Science;2024-07-23

2. Coalgebraic Reasoning with Global Assumptions in Arithmetic Modal Logics;ACM Transactions on Computational Logic;2022-01-14

3. A Complete Axiomatisation for Quantifier-Free Separation Logic;Logical Methods in Computer Science;2021-08-10

4. Predicate Liftings and Functor Presentations in Coalgebraic Expression Languages;Coalgebraic Methods in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3