Affiliation:
1. Eindhoven University of Technology, EURANDOM
2. Eindhoven University of Technology, AlcatelLucent, Bell Labs
Abstract
Backlog-based CSMA strategies provide a popular mechanism for distributed medium access control in wireless networks. When suitably designed, such strategies offer the striking capability to match the optimal throughput performance of centralized scheduling algorithms in a wide range of scenarios. Unfortunately, however, the activation rules used in these schemes tend to yield excessive backlogs and delays. More aggressive activation rates can potentially improve the delay performance, but may not allow provable maximum-stability guarantees. In order to gain a fundamental understanding how the shape of the activation function affects the queueing behavior, we focus on a single- node scenario, thus separating the impact of the network topology. We demonstrate that three qualitatively different regimes can arise, depending on how rapidly the activation function increases with the backlog. Simulation experiments are conducted to validate the analytical findings.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献