Testing Abstractions for Cyber-Physical Control Systems

Author:

Mandrioli Claudio1ORCID,Nyberg Carlsson Max2ORCID,Maggio Martina3ORCID

Affiliation:

1. Univeristy of Luxembourg, Luxembourg

2. Lund Univeristy, Sweden

3. Saarland Univeristy, Germany

Abstract

Control systems are ubiquitous and often at the core of Cyber-Physical Systems, like cars and aeroplanes. They are implemented as embedded software that interacts in closed loop with the physical world through sensors and actuators. As a consequence, the software cannot just be tested in isolation. To close the loop in a testing environment and root causing failure generated by different parts of the system, executable models are used to abstract specific components. Different testing setups can be implemented by abstracting different elements: The most common ones are model-in-the-loop, software-in-the-loop, hardware-in-the-loop, and real-physics-in-the-loop. In this article, we discuss the properties of these setups and the types of faults they can expose. We develop a comprehensive case study using the Crazyflie, a drone whose software and hardware are open source. We implement all the most common testing setups and ensure the consistent injection of faults in each of them. We inject faults in the control system and we compare with the nominal performance of the non-faulty software. Our results show the specific capabilities of the different setups in exposing faults. Contrary to intuition and previous literature, we show that the setups do not belong to a strict hierarchy, and they are best designed to maximize the differences across them rather than to be as close as possible to reality.

Funder

European Union’s Horizon 2020 research and innovation programme

Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stress Testing Control Loops in Cyber-physical Systems;ACM Transactions on Software Engineering and Methodology;2023-12-21

2. Modeling more software performance antipatterns in cyber-physical systems;Software and Systems Modeling;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3