Toward a Period-specific Optimized Neural Network for OCR Error Correction of Historical Hebrew Texts

Author:

Suissa Omri1ORCID,Zhitomirsky-Geffet Maayan1,Elmalech Avshalom1

Affiliation:

1. Bar Ilan University, Ramat Gan, Israel

Abstract

Over the past few decades, large archives of paper-based historical documents, such as books and newspapers, have been digitized using the Optical Character Recognition (OCR) technology. Unfortunately, this broadly used technology is error-prone, especially when an OCRed document was written hundreds of years ago. Neural networks have shown great success in solving various text processing tasks, including OCR post-correction. The main disadvantage of using neural networks for historical corpora is the lack of sufficiently large training datasets they require to learn from, especially for morphologically rich languages like Hebrew. Moreover, it is not clear what are the optimal structure and values of hyperparameters (predefined parameters) of neural networks for OCR error correction in Hebrew due to its unique features. Furthermore, languages change across genres and periods. These changes may affect the accuracy of OCR post-correction neural network models. To overcome these challenges, we developed a new multi-phase method for generating artificial training datasets with OCR errors and hyperparameters’ optimization for building an effective neural network for OCR post-correction in Hebrew. To evaluate the proposed approach, a series of experiments using several literary Hebrew corpora from various periods and genres were conducted. The obtained results demonstrate that (1) training a network on texts from a similar period dramatically improves the network's ability to fix OCR errors, (2) using the proposed error injection algorithm, based on character-level period-specific errors, minimizes the need for manually corrected data and improves the network accuracy by 9%, (3) the optimized network design improves the accuracy by 3% compared to the state-of-the-art network, and (4) the constructed optimized network outperforms neural machine translation models and industry-leading spellcheckers. The proposed methodology may have practical implications for digital humanities projects that aim to search and analyze OCRed documents in Hebrew and potentially other morphologically rich languages.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3