Affiliation:
1. Australian Centre for Field Robotics, The University of Sydney, Sydney, NSW, Australia
Abstract
This article presents a Bayesian framework for manipulating mesh surfaces with the aim of improving the positional integrity of the geological boundaries that they seek to represent. The assumption is that these surfaces, created initially using sparse data, capture the global trend and provide a reasonable approximation of the stratigraphic, mineralization, and other types of boundaries for mining exploration, but they are locally inaccurate at scales typically required for grade estimation. The proposed methodology makes local spatial corrections automatically to maximize the agreement between the modeled surfaces and observed samples. Where possible, vertices on a mesh surface are moved to provide a clear delineation, for instance, between ore and waste material across the boundary based on spatial and compositional analysis using assay measurements collected from densely spaced, geo-registered blast holes. The maximum a posteriori (MAP) solution ultimately considers the chemistry observation likelihood in a given domain. Furthermore, it is guided by an a priori spatial structure that embeds geological domain knowledge and determines the likelihood of a displacement estimate. The results demonstrate that increasing surface fidelity can significantly improve grade estimation performance based on large-scale model validation.
Funder
Australian Centre for Field Robotics
Rio Tinto Centre for Mine Automation
Publisher
Association for Computing Machinery (ACM)
Subject
Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献