FANG

Author:

Nguyen Van-Hoang1,Sugiyama Kazunari2,Nakov Preslav3,Kan Min-Yen1

Affiliation:

1. National University of Singapore, Singapore

2. Kyoto University, Kyoto, Japan

3. Qatar Computing Research Institute, HBKU, Doha, Qatar

Abstract

We propose Factual News Graph (FANG), a novel graphical social context representation and learning framework for fake news detection. Unlike previous contextual models that have targeted performance, our focus is on representation learning. Compared to transductive models, FANG is scalable in training as it does not have to maintain the social entities involved in the propagation of other news and is efficient at inference time, without the need to reprocess the entire graph. Our experimental results show that FANG is better at capturing the social context into a high-fidelity representation, compared to recent graphical and nongraphical models. In particular, FANG yields significant improvements for the task of fake news detection and is robust in the case of limited training data. We further demonstrate that the representations learned by FANG generalize to related tasks, such as predicting the factuality of reporting of a news medium.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MSynFD: Multi-hop Syntax Aware Fake News Detection;Proceedings of the ACM Web Conference 2024;2024-05-13

2. Social Event Detection with Reinforced Deep Heterogeneous Graph Attention Network;2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Distributed Subgraph Query Processing Using Filtering Scores on Spark;Electronics;2023-08-29

4. Rumor Detection with Diverse Counterfactual Evidence;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. Interpretable and Effective Reinforcement Learning for Attacking against Graph-based Rumor Detection;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3