Why People Skip Music? On Predicting Music Skips using Deep Reinforcement Learning

Author:

Meggetto Francesco1ORCID,Revie Crawford2ORCID,Levine John2ORCID,Moshfeghi Yashar1ORCID

Affiliation:

1. NeuraSearch Laboratory, University of Strathclyde, United Kingdom

2. University of Strathclyde, United Kingdom

Funder

Engineering and Physical Sciences Research Council

Publisher

ACM

Reference67 articles.

1. Sainath Adapa. 2019. Sequential modeling of Sessions using Recurrent Neural Networks for Skip Prediction. arXiv preprint arXiv:1904.10273(2019). Sainath Adapa. 2019. Sequential modeling of Sessions using Recurrent Neural Networks for Skip Prediction. arXiv preprint arXiv:1904.10273(2019).

2. Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction

3. M Mehdi Afsar Trafford Crump and Behrouz Far. 2021. Reinforcement learning based recommender systems: A survey. ACM Computing Surveys (CSUR)(2021). M Mehdi Afsar Trafford Crump and Behrouz Far. 2021. Reinforcement learning based recommender systems: A survey. ACM Computing Surveys (CSUR)(2021).

4. Rishabh Agarwal , Dale Schuurmans , and Mohammad Norouzi . 2020 . An optimistic perspective on offline reinforcement learning . In International Conference on Machine Learning. PMLR, 104–114 . Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An optimistic perspective on offline reinforcement learning. In International Conference on Machine Learning. PMLR, 104–114.

5. Skipping Skippable Ads on YouTube: How, When, Why and Why Not?

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Negative Feedback for Music Personalization;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22

2. Interpreting Decision Process in Offline Reinforcement Learning for Interactive Recommendation Systems;Communications in Computer and Information Science;2023-11-26

3. Learning and Optimization of Implicit Negative Feedback for Industrial Short-video Recommender System;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3