Publisher
Springer Nature Singapore
Reference22 articles.
1. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)
2. Dacrema, M.F., Boglio, S., Cremonesi, P., Jannach, D.: A troubling analysis of reproducibility and progress in recommender systems research. ACM Transactions on Information Systems 39(2), 1–49 (2021). https://doi.org/10.1145/3434185, arXiv:1911.07698 [cs]
3. Deffayet, R., et al.: Offline evaluation for reinforcement learning-based recommendation: a critical issue and some alternatives. arXiv preprint arXiv:2301.00993 (2023)
4. Frolov, E., Oseledets, I.: Fifty shades of ratings: how to benefit from a negative feedback in top-n recommendations tasks. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 91–98 (2016). https://doi.org/10.1145/2959100.2959170, http://arxiv.org/abs/1607.04228, arXiv:1607.04228 [cs, stat]
5. Grishanov, A., Ianina, A., Vorontsov, K.: Multiobjective evaluation of reinforcement learning based recommender systems. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 622–627 (2022)