Large-Scale Adversarial Sports Play Retrieval with Learning to Rank

Author:

Di Mingyang1,Klabjan Diego1,Sha Long2,Lucey Patrick3

Affiliation:

1. Northwestern University, Evanston, IL

2. Queensland University of Technology

3. STATS LLC

Abstract

As teams of professional leagues are becoming more and more analytically driven, the interest in effective data management and access of sports plays has dramatically increased. In this article, we present a retrieval system that can quickly find the most relevant plays from historical games given an input query. To search through a large number of games at an interactive speed, our system is built upon a distributed framework so that each query-result pair is evaluated in parallel. We also propose a pairwise learning to rank approach to improve search ranking based on users’ clickthrough behavior. The similarity metric in training the rank function is based on automatically learnt features from a convolutional autoencoder. Finally, we showcase the efficacy of our learning to rank approach by demonstrating rank quality in a user study.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3