Constrained Dual-Level Bandit for Personalized Impression Regulation in Online Ranking Systems

Author:

Li Zhao1ORCID,Song Junshuai2ORCID,Hu Zehong1,Wang Zhen1,Gao Jun2

Affiliation:

1. Alibaba Group, Hangzhou, China

2. Peking University, Beijing, China

Abstract

Impression regulation plays an important role in various online ranking systems, e.g. , e-commerce ranking systems always need to achieve local commercial demands on some pre-labeled target items like fresh item cultivation and fraudulent item counteracting while maximizing its global revenue. However, local impression regulation may cause “butterfly effects” on the global scale, e.g. , in e-commerce, the price preference fluctuation in initial conditions (overpriced or underpriced items) may create a significantly different outcome, thus affecting shopping experience and bringing economic losses to platforms. To prevent “butterfly effects”, some researchers define their regulation objectives with global constraints, by using contextual bandit at the page-level that requires all items on one page sharing the same regulation action, which fails to conduct impression regulation on individual items. To address this problem, in this article, we propose a personalized impression regulation method that can directly makes regulation decisions for each user-item pair. Specifically, we model the regulation problem as a C onstrained D ual-level B andit (CDB) problem, where the local regulation action and reward signals are at the item-level while the global effect constraint on the platform impression can be calculated at the page-level only. To handle the asynchronous signals, we first expand the page-level constraint to the item-level and then derive the policy updating as a second-order cone optimization problem. Our CDB approaches the optimal policy by iteratively solving the optimization problem. Experiments are performed on both offline and online datasets, and the results, theoretically and empirically, demonstrate CDB outperforms state-of-the-art algorithms.

Funder

NSFC

Alibaba-PKU

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference54 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3