Latent Time-Series Motifs

Author:

Grabocka Josif1,Schilling Nicolas1,Schmidt-Thieme Lars1

Affiliation:

1. ISMLL, University of Hildesheim, Hildesheim, Germany

Abstract

Motifs are the most repetitive/frequent patterns of a time-series. The discovery of motifs is crucial for practitioners in order to understand and interpret the phenomena occurring in sequential data. Currently, motifs are searched among series sub-sequences, aiming at selecting the most frequently occurring ones. Search-based methods, which try out series sub-sequence as motif candidates, are currently believed to be the best methods in finding the most frequent patterns. However, this paper proposes an entirely new perspective in finding motifs. We demonstrate that searching is non-optimal since the domain of motifs is restricted, and instead we propose a principled optimization approach able to find optimal motifs. We treat the occurrence frequency as a function and time-series motifs as its parameters, therefore we learn the optimal motifs that maximize the frequency function. In contrast to searching, our method is able to discover the most repetitive patterns (hence optimal), even in cases where they do not explicitly occur as sub-sequences. Experiments on several real-life time-series datasets show that the motifs found by our method are highly more frequent than the ones found through searching, for exactly the same distance threshold.

Funder

Seventh Framework Programme of the European Commission, through the REDUCTION

Deutsche Forschungsgemeinschaft within the project HyLAP

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LoCoMotif: discovering time-warped motifs in time series;Data Mining and Knowledge Discovery;2024-05-30

2. Window Size Selection in Unsupervised Time Series Analytics: A Review and Benchmark;Advanced Analytics and Learning on Temporal Data;2023

3. Motiflets;Proceedings of the VLDB Endowment;2022-12

4. AppEKG: A Simple Unifying View of HPC Applications in Production;2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS);2022-11

5. Graph-Based Stock Recommendation by Time-Aware Relational Attention Network;ACM Transactions on Knowledge Discovery from Data;2021-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3