Affiliation:
1. School of Computer Science and Engineering, Central South University Changsha China
2. Alibaba Group Hangzhou China
Abstract
The stock market investors aim at maximizing their investment returns. Stock recommendation task is to recommend stocks with higher return ratios for the investors. Most stock prediction methods study the historical sequence patterns to predict stock trend or price in the near future. In fact, the future price of a stock is correlated not only with its historical price, but also with other stocks. In this article, we take into account the relationships between stocks (corporations) by stock relation graph. Furthermore, we propose a Time-aware Relational Attention Network (TRAN) for graph-based stock recommendation according to return ratio ranking. In TRAN, the time-aware relational attention mechanism is designed to capture time-varying correlation strengths between stocks by the interaction of historical sequences and stock description documents. With the dynamic strengths, the nodes of the stock relation graph aggregate the features of neighbor stock nodes by graph convolution operation. For a given group of stocks, the proposed TRAN model can output the ranking results of stocks according to their return ratios. The experimental results on several real-world datasets demonstrate the effectiveness of our TRAN for stock recommendation.
Funder
National Natural Science Foundation of China
CAAI-Huawei MindSpore Open Fund, Zhejiang Lab
Fundamental Research Funds for the Central Universities of Central South University
Publisher
Association for Computing Machinery (ACM)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献