Adaptive Text Denoising Network for Image Caption Editing

Author:

Yuan Mengqi1ORCID,Bao Bing-Kun1ORCID,Tan Zhiyi1ORCID,Xu Changsheng2ORCID

Affiliation:

1. Nanjing University of Postsand Telecommunications, Nanjing, China

2. Peng Cheng Laboratory; University of Chinese Academy of Sciences; NLPR, Institute of Automation, CAS, Beijing, China

Abstract

Image caption editing, which aims at editing the inaccurate descriptions of the images, is an interdisciplinary task of computer vision and natural language processing. As the task requires encoding the image and its corresponding inaccurate caption simultaneously and decoding to generate an accurate image caption, the encoder-decoder framework is widely adopted for image caption editing. However, existing methods mostly focus on the decoder, yet ignore a big challenge on the encoder: the semantic inconsistency between image and caption. To this end, we propose a novel A daptive T ext D enoising Net work (ATD-Net) to filter out noises at the word level and improve the model’s robustness at sentence level. Specifically, at the word level, we design a cross-attention mechanism called Textual Attention Mechanism (TAM), to differentiate the misdescriptive words. The TAM is designed to encode the inaccurate caption word by word based on the content of both image and caption. At the sentence level, in order to minimize the influence of misdescriptive words on the semantic of an entire caption, we introduce a Bidirectional Encoder to extract the correct semantic representation from the raw caption. The Bidirectional Encoder is able to model the global semantics of the raw caption, which enhances the robustness of the framework. We extensively evaluate our proposals on the MS-COCO image captioning dataset and prove the effectiveness of our method when compared with the state-of-the-arts.

Funder

National Key Research and Development Project

National Nature Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Visual Relationships via Transformer-based Graphs for Enhanced Image Captioning;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-01-22

2. Sentiment-Oriented Transformer-Based Variational Autoencoder Network for Live Video Commenting;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3