Affiliation:
1. University of Science and Technology of China, China
2. University of Science and Technology of China and the Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China
Abstract
Image captioning (IC), bringing vision to language, has drawn extensive attention. A crucial aspect of IC is the accurate depiction of visual relations among image objects. Visual relations encompass two primary facets: content relations and structural relations. Content relations, which comprise geometric positions content (i.e., distances and sizes) and semantic interactions content (i.e., actions and possessives), unveil the mutual correlations between objects. In contrast, structural relations pertain to the topological connectivity of object regions. Existing Transformer-based methods typically resort to geometric positions to enhance the visual relations, yet only using the shallow geometric content is unable to precisely cover actional content correlations and structural connection relations. In this article, we adopt a comprehensive perspective to examine the correlations between objects, incorporating both content relations (i.e., geometric and semantic relations) and structural relations, with the aim of generating plausible captions. To achieve this, first, we construct a geometric graph from bounding box features and a semantic graph from the scene graph parser to model the content relations. Innovatively, we construct a topology graph that amalgamates the sparsity characteristics of the geometric and semantic graphs, enabling the representation of image structural relations. Second, we propose a novel unified approach to enrich image relation representations by integrating semantic, geometric, and structural relations into self-attention. Finally, in the language decoding stage, we further leverage the semantic relation as prior knowledge to generate accurate words. Extensive experiments on MS-COCO dataset demonstrate the effectiveness of our model, with improvements of CIDEr from 128.6% to 136.6%. Codes have been released at
https://github.com/CrossmodalGroup/ER-SAN/tree/main/VG-Cap
.
Funder
National Natural Science Foundation of China
Science Fund for Creative Research Groups
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Reference64 articles.
1. SPICE: Semantic Propositional Image Caption Evaluation
2. Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering
3. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. 65–72.
4. Vision-Enhanced and Consensus-Aware Transformer for Image Captioning
5. Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with transformers. In Proceedings of the 16th European Conference on Computer Vision (ECCV’20). Springer, 213–229.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献