Informing memory operations

Author:

Horowitz Mark1,Martonosi Margaret2,Mowry Todd C.3,Smith Michael D.4

Affiliation:

1. Computer Systems, Laboratory, Stanford University

2. Department of Electrical Engineering, Princeton University

3. Department of Electrical and Computer Engineering, University of Toronto

4. Division of Applied Sciences, Harvard University

Abstract

Memory latency is an important bottleneck in system performance that cannot be adequately solved by hardware alone. Several promising software techniques have been shown to address this problem successfully in specific situations. However, the generality of these software approaches has been limited because current architectures do not provide a fine-grained, low-overhead mechanism for observing and reacting to memory behavior directly. To fill this need, we propose a new class of memory operations called informing memory operations, which essentially consist of a memory operation combined (either implicitly or explicitly) with a conditional branch-and-link operation that is taken only if the reference suffers a cache miss. We describe two different implementations of informing memory operations---one based on a cache-outcome condition code and another based on low-overhead traps---and find that modern in-order-issue and out-of-order-issue superscalar processors already contain the bulk of the necessary hardware support. We describe how a number of software-based memory optimizations can exploit informing memory operations to enhance performance, and look at cache coherence with fine-grained access control as a case study. Our performance results demonstrate that the runtime overhead of invoking the informing mechanism on the Alpha 21164 and MIPS R10000 processors is generally small enough to provide considerable flexibility to hardware and software designers, and that the cache coherence application has improved performance compared to other current solutions. We believe that the inclusion of informing memory operations in future processors may spur even more innovative performance optimizations.

Publisher

Association for Computing Machinery (ACM)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VMT: Virtualized Multi-Threading for Accelerating Graph Workloads on Commodity Processors;IEEE Transactions on Computers;2021

2. Bridging the Latency Gap between NVM and DRAM for Latency-bound Operations;Proceedings of the 15th International Workshop on Data Management on New Hardware - DaMoN'19;2019

3. SWOOP: software-hardware co-design for non-speculative, execute-ahead, in-order cores;Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation;2018-06-11

4. Transcending Hardware Limits with Software Out-of-Order Processing;IEEE Computer Architecture Letters;2017-07-01

5. Random Fill Cache Architecture;2014 47th Annual IEEE/ACM International Symposium on Microarchitecture;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3