A router architecture for real-time point-to-point networks

Author:

Rexford Jennifer1,Hall John1,Shin Kang G.1

Affiliation:

1. Real-Time Computing Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI

Abstract

Parallel machines have the potential to satisfy the large computational demands of emerging real-time applications. These applications require a predictable communication network, where time-constrained traffic requires bounds on latency or throughput while good average performance suffices for best-effort packets. This paper presents a router architecture that tailors low-level routing, switching, arbitration and flow-control policies to the conflicting demands of each traffic class. The router implements deadline-based scheduling, with packet switching and table-driven multicast routing, to bound end-to-end delay for time-constrained traffic, while allowing best-effort traffic to capitalize on the low-latency routing and switching schemes common in modern parallel machines. To limit the cost of servicing time-constrained traffic, the router shares packet buffers and link-scheduling logic between the multiple output ports. Verilog simulations demonstrate that the design meets the performance goals of both traffic classes in a single-chip solution.

Publisher

Association for Computing Machinery (ACM)

Reference30 articles.

1. Design and implementation of a priority forwarding router chip for real-time interconnection networks;Toda K.;International Journal of Mini and Microcomputers,1995

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Approximation Algorithms for Time-Constrained Scheduling on Line Networks;Theory of Computing Systems;2011-08-16

2. Integration of admission, congestion, and peak power control in QoS-aware clusters;Journal of Parallel and Distributed Computing;2010-11

3. Towards a service-enabled distributed router architecture;IET Circuits, Devices & Systems;2008

4. Sorting Packets by Packet Schedulers Using a Connected Trie Data Structure;IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications;2007

5. Performance analysis of a QoS capable cluster interconnect;Performance Evaluation;2005-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3