1. David Barber and Felix Agakov . 2003 . The IM Algorithm: A Variational Approach to Information Maximization . In Proceedings of the 16th International Conference on Neural Information Processing Systems (Whistler , British Columbia, Canada) (NIPS'03). MIT Press, Cambridge, MA, USA, 201--208. David Barber and Felix Agakov. 2003. The IM Algorithm: A Variational Approach to Information Maximization. In Proceedings of the 16th International Conference on Neural Information Processing Systems (Whistler, British Columbia, Canada) (NIPS'03). MIT Press, Cambridge, MA, USA, 201--208.
2. Konstantinos Chatzilygeroudis , Antoine Cully , Vassilis Vassiliades , and Jean-Baptiste Mouret . 2021. Quality-Diversity Optimization: a novel branch of stochastic optimization . In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems . Springer , 109--135. Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-Baptiste Mouret. 2021. Quality-Diversity Optimization: a novel branch of stochastic optimization. In Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer, 109--135.
3. Scaling MAP-Elites to deep neuroevolution
4. Quality and Diversity Optimization: A Unifying Modular Framework
5. Pierluca D'Oro , Max Schwarzer , Evgenii Nikishin , Pierre-Luc Bacon , Marc G Bellemare , and Aaron Courville . [n. d.]. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier . In Deep Reinforcement Learning Workshop NeurIPS 2022 . Pierluca D'Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron Courville. [n. d.]. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. In Deep Reinforcement Learning Workshop NeurIPS 2022.