Cellular geometric semantic genetic programming

Author:

Bonin Lorenzo,Rovito Luigi,De Lorenzo Andrea,Manzoni Luca

Abstract

AbstractAmong the different variants of Genetic Programming (GP), Geometric Semantic GP (GSGP) has proved to be both efficient and effective in finding good solutions. The fact that the operators of GSGP operate on the semantics of the individuals in a clear way provides guarantees on the way the search is performed. GSGP is not, however, free from limitations like the premature convergence of the population to a small–and possibly sub-optimal–area of the search space. One reason for this issue could be the fact that good individuals can quickly “spread” in the population suppressing the emergence of competition. To mitigate this problem, we impose a cellular automata (CA) inspired communication topology over GSGP. In CAs a collection of agents (as finite state automata) are positioned in a n-dimensional periodic grid and communicates only locally with the automata in their neighbourhoods. Similarly, we assign a location to each individual on an n-dimensional grid and the entire evolution for an individual will happen locally by considering, for each individual, only the individuals in its neighbourhood. Specifically, we present an algorithm in which, for each generation, a subset of the neighbourhood of each individual is sampled and the selection for the given cell in the grid is performed by extracting the two best individuals of this subset, which are employed as parents for the Geometric Semantic Crossover. We compare this cellular GSGP (cGSGP) approach with standard GSGP on eight regression problems, showing that it can provide better solutions than GSGP. Moreover, by analyzing convergence rates, we show that the improvement is observable regardless of the number of executed generations. As a side effect, we additionally show that combining a small-neighbourhood-based cellular spatial structure with GSGP helps in producing smaller solutions. Finally, we measure the spatial autocorrelation of the population by adopting the Moran’s I coefficient to provide an overview of the diversity, showing that our cellular spatial structure helps in providing better diversity during the early stages of the evolution.

Funder

Università degli Studi di Trieste

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3