Comprehensive multivariate extrapolation modeling of multiprocessor cache miss rates

Author:

Gluhovsky Ilya1,Vengerov David1,O'Krafka Brian1

Affiliation:

1. Sun Microsystems Laboratories, Menlo Park, CA

Abstract

Cache miss rates are an important subset of system model inputs. Cache miss rate models are used for broad design space exploration in which many cache configurations cannot be simulated directly due to limitations of trace collection setups or available resources. Often it is not practical to simulate large caches. Large processor counts and consequent potentially high degree of cache sharing are frequently not reproducible on small existing systems. In this article, we present an approach to building multivariate regression models for predicting cache miss rates beyond the range of collectible data. The extrapolation model attempts to accurately estimate the high-level trend of the existing data, which can be extended in a natural way. We extend previous work by its applicability to multiple miss rate components and its ability to model a wide range of cache parameters, including size, line size, associativity and sharing. The stability of extrapolation is recognized to be a crucial requirement. The proposed extrapolation model is shown to be stable to small data perturbations that may be introduced during data collection.We show the effectiveness of the technique by applying it to two commercial workloads. The wide design space contains configurations that are much larger than those for which miss rate data were available. The fitted data match the simulation data very well. The various curves show how a miss rate model is useful for not only estimating the performance of specific configurations, but also for providing insight into miss rate trends.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting cloud performance for HPC applications before deployment;Future Generation Computer Systems;2018-10

2. Scaling Properties of Parallel Applications to Exascale;International Journal of Parallel Programming;2016-04-05

3. Scaling application properties to exascale;Proceedings of the 12th ACM International Conference on Computing Frontiers;2015-05-06

4. Critical Scaling in Standard Biased Random Walks;Physical Review Letters;2007-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3