A Framework for Space Complexity in Algebraic Proof Systems

Author:

Bonacina Ilario1,Galesi Nicola1

Affiliation:

1. Sapienza University of Rome, Roma, Italy

Abstract

Algebraic proof systems, such as Polynomial Calculus (PC) and Polynomial Calculus with Resolution (PCR), refute contradictions using polynomials. Space complexity for such systems measures the number of distinct monomials to be kept in memory while verifying a proof. We introduce a new combinatorial framework for proving space lower bounds in algebraic proof systems. As an immediate application, we obtain the space lower bounds previously provided for PC/PCR [Alekhnovich et al. 2002; Filmus et al. 2012]. More importantly, using our approach in its full potential, we prove Ω( n ) space lower bounds in PC/PCR for random k -CNFs ( k ≥ 4) in n variables, thus solving an open problem posed in Alekhnovich et al. [2002] and Filmus et al. [2012]. Our method also applies to the Graph Pigeonhole Principle, which is a variant of the Pigeonhole Principle defined over a constant (left) degree expander graph.

Funder

John Templeton Foundation under the Project The Limits of Theorem Proving

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference34 articles.

1. Space Complexity in Propositional Calculus

2. Lower bounds for polynomial calculus: Non-binomial case;Alekhnovich Michael;Proceedings of the Steklov Institute of Mathematics,2003

3. On sufficient conditions for unsatisfiability of random formulas

4. A combinatorial characterization of resolution width

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proof Complexity and the Binary Encoding of Combinatorial Principles;SIAM Journal on Computing;2024-06-24

2. Chapter 7. Proof Complexity and SAT Solving;Frontiers in Artificial Intelligence and Applications;2021-02-02

3. Sherali-Adams and the Binary Encoding of Combinatorial Principles;LATIN 2020: Theoretical Informatics;2020

4. Polynomial Calculus Space and Resolution Width;2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS);2019-11

5. Resolution and the Binary Encoding of Combinatorial Principles;LEIBNIZ INT PR INFOR;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3