Prelimit Coupling and Steady-State Convergence of Constant-stepsize Nonsmooth Contractive SA

Author:

Zhang Yixuan1ORCID,Huo Dongyan (Lucy)2ORCID,Chen Yudong1ORCID,Xie Qiaomin1ORCID

Affiliation:

1. University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Cornell University, Ithaca, New York, USA

Abstract

Motivated by Q-learning, we study nonsmooth contractive stochastic approximation (SA) with constant stepsize. We focus on two important classes of dynamics: 1) nonsmooth contractive SA with additive noise, and 2) synchronous and asynchronous Q-learning, which features both additive and multiplicative noise. For both dynamics, we establish weak convergence of the iterates to a stationary limit distribution in Wasserstein distance. Furthermore, we propose a prelimit coupling technique for establishing steady-state convergence and characterize the limit of the stationary distribution as the stepsize goes to zero. Using this result, we derive that the asymptotic bias of nonsmooth SA is proportional to the square root of the stepsize, which stands in sharp contrast to smooth SA. This bias characterization allows for the use of Richardson-Romberg extrapolation for bias reduction in nonsmooth SA.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference11 articles.

1. Bridging the gap between constant step size stochastic gradient descent and Markov chains

2. Alain Durmus, Pablo Jiménez, Eric Moulines, and Salem Said. 2021. On Riemannian Stochastic Approximation Schemes with Fixed Step-Size. In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics. PMLR, 1018--1026. https://proceedings.mlr.press/v130/durmus21a.html

3. F B Hildebrand. 1987. Introduction to numerical analysis (2 ed.). Dover Publications, Mineola, NY.

4. Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes

5. Effectiveness of Constant Stepsize in Markovian LSA and Statistical Inference

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3