Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes

Author:

Huo Dongyan (Lucy)1ORCID,Chen Yudong2ORCID,Xie Qiaomin2ORCID

Affiliation:

1. Cornell University, Ithaca, NY, USA

2. University of Wisconsin-Madison, Madison, WI, USA

Publisher

ACM

Reference6 articles.

1. Jalaj Bhandari , Daniel Russo , and Raghav Singal . 2021 . A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation . Operations Research , Vol. 69 , 3 (01 May 2021), 950--973. https://doi.org/10.1287/opre.2020.2024 10.1287/opre.2020.2024 Jalaj Bhandari, Daniel Russo, and Raghav Singal. 2021. A Finite Time Analysis of Temporal Difference Learning with Linear Function Approximation. Operations Research, Vol. 69, 3 (01 May 2021), 950--973. https://doi.org/10.1287/opre.2020.2024

2. Dongyann (Lucy) Huo Yudong Chen and Qiaomin Xie. 2022. Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. https://doi.org/10.48550/ARXIV.2210.00953 10.48550/ARXIV.2210.00953

3. Dongyann (Lucy) Huo Yudong Chen and Qiaomin Xie. 2022. Bias and Extrapolation in Markovian Linear Stochastic Approximation with Constant Stepsizes. https://doi.org/10.48550/ARXIV.2210.00953

4. Chandrashekar Lakshminarayanan and Csaba Szepesvári . 2018 . Linear Stochastic Approximation: How Far Does Constant Step-Size and Iterate Averaging Go? . In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. PMLR, 1347--1355 . Chandrashekar Lakshminarayanan and Csaba Szepesvári. 2018. Linear Stochastic Approximation: How Far Does Constant Step-Size and Iterate Averaging Go?. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. PMLR, 1347--1355.

5. Wenlong Mou , Chris Junchi Li , Martin J. Wainwright , Peter L. Bartlett , and Michael I. Jordan . 2020. On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration . In Proceedings of Thirty Third Conference on Learning Theory. PMLR, 2947--2997 . Wenlong Mou, Chris Junchi Li, Martin J. Wainwright, Peter L. Bartlett, and Michael I. Jordan. 2020. On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration. In Proceedings of Thirty Third Conference on Learning Theory. PMLR, 2947--2997.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prelimit Coupling and Steady-State Convergence of Constant-stepsize Nonsmooth Contractive SA;ACM SIGMETRICS Performance Evaluation Review;2024-06-11

2. Prelimit Coupling and Steady-State Convergence of Constant-stepsize Nonsmooth Contractive SA;Abstracts of the 2024 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems;2024-06-10

3. The Curse of Memory in Stochastic Approximation;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3