What’s Decidable About Causally Consistent Shared Memory?

Author:

Lahav Ori1ORCID,Boker Udi2

Affiliation:

1. Tel Aviv University, Israel

2. Interdisciplinary Center (IDC) Herzliya, Herzliya, Israel

Abstract

While causal consistency is one of the most fundamental consistency models weaker than sequential consistency, the decidability of safety verification for (finite-state) concurrent programs running under causally consistent shared memories is still unclear. In this article, we establish the decidability of this problem for two standard and well-studied variants of causal consistency. To do so, for each variant, we develop an equivalent “lossy” operational semantics, whose states track possible futures, rather than more standard semantics that record the history of the execution. We show that these semantics constitute well-structured transition systems, thus enabling decidable verification. Based on a key observation, which we call the “shared-memory causality principle,” the two novel semantics may also be of independent use in the investigation of weakly consistent models and their verification. Interestingly, our results are in contrast to the undecidability of this problem under the Release/Acquire fragment of the C/C++11 memory model, which forms another variant of causally consistent memory that, in terms of allowed outcomes, lies strictly between the two models studied here. Nevertheless, we show that all these three variants coincide for write/write-race-free programs, which implies the decidability of verification for such programs under Release/Acquire.

Funder

Israel Science Foundation

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme

Alon Young Faculty Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Hard Is Weak-Memory Testing?;Proceedings of the ACM on Programming Languages;2024-01-05

2. Lifting the Reasoning Level in Generic Weak Memory Verification;iFM 2023;2023-11-06

3. Static Analysis of Memory Models for SMT Encodings;Proceedings of the ACM on Programming Languages;2023-10-16

4. Optimal Reads-From Consistency Checking for C11-Style Memory Models;Proceedings of the ACM on Programming Languages;2023-06-06

5. Probabilistic Concurrency Testing for Weak Memory Programs;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3